Magnetic structure of cross-shaped permalloy arrays embedded in silicon wafers

Article in Journal of Magnetism and Magnetic Materials · April 2005
DOI: 10.1016/j.jmmm.2004.11.404

7 authors, including:

Takayuki Ishibashi
Nagaoka University of Technology
181 PUBLICATIONS 1,375 CITATIONS

Akinori Koukitu
Tokyo University of Agriculture and Technology
303 PUBLICATIONS 4,560 CITATIONS

Katsuaki Sato
Tokyo University of Agriculture and Technology
289 PUBLICATIONS 3,505 CITATIONS

Some of the authors of this publication are also working on these related projects:

- Grant-in-Aid for Scientific Research from Ministry of Education, Science, Sports and Culture (Category No.0555099) "Near-field Magnetoptical Microscope for Observation of Nano-spin Structure" View project

- Grant-in-Aid for Scientific Research from MEXT (Category No. 08455009) "Characterization of Interfaces in Artificial Superlattice by Means of Nonlinear Magneto-Optical Effect" View project

All content following this page was uploaded by Katsuaki Sato on 30 November 2017.

The user has requested enhancement of the downloaded file.
Magnetic structure of cross-shaped permalloy arrays embedded in silicon wafers

Kenji Machidaa,b,*, Tomoyuki Tezukab, Takahiro Yamamotob, Takayuki Ishibashib, Yoshitaka Morishitab, Akinori Koukitub, Katsuaki Satob

aMaterials Science, Science & Technical Research Laboratories, NHK, Setagaya-ku, Tokyo 157-8510, Japan
bFaculty of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan

Available online 14 December 2004

Abstract

This paper describes the observed magnetic structure and the micromagnetic simulation of cross-shaped, permalloy (Ni\textsubscript{80}Fe\textsubscript{20}) arrays embedded in silicon wafers. The nano-scale-width, cross-shaped patterns were fabricated using the damascene technique, electron beam lithography, and chemical mechanical polishing. The magnetic poles were observed as two pairs of bright and dark spots at the ends of the crossed-bars using a magnetic force microscope. The force gradient distributions were simulated based on micromagnetic calculations and tip’s stray field calculations using the integral equation method. This process of calculation successfully explains the appearance of the poles and complicated spin structure at the crossing region.

PACS: 75.60.Ch; 75.75.+a

Keywords: Magnetic structure; Micromagnetic simulation; Damascene technique; Magnetic force microscope

It is critical to understand the spin structures and magnetic switching behavior of nano-scale patterned magnetic elements for application in high-density data storage devices, nonvolatile magnetic memories, and magnetic logic gates. The spin structures of square, rectangular, and circular dots have been extensively studied [1]. We have investigated regularly aligned magnetic patterns of square (1 × 1 \textmu m2), rectangular (300 × 100 \textmu m2), and circular (100 nm in diameter) arrays with a thickness of 150 nm and a pattern separation of 300 nm embedded in silicon wafers [2].

These patterns were successfully fabricated using the damascene technique, electron beam (EB) lithography, and chemical mechanical polishing (CMP). However, the spin structures for more complicated geometries with a branch have not yet been adequately investigated. We focused on cross-shaped arrays of permalloy (Ni\textsubscript{80}Fe\textsubscript{20}) in order to clarify their spin structures.

Fig. 1 shows the mask patterns of the cross-shaped arrays. Two kinds of structures termed CROSS1 (200 nm in width, 3 \textmu m in length with a separation of 3 \textmu m) and CROSS2 (100 nm in width, 1.5 \textmu m in length with a separation of 1.5 \textmu m) were fabricated. EB resist films (ZEP520) spin-coated on a silicon wafer were exposed. The wafer with the patterned resist films was dry-etched by RIE using CF\textsubscript{4} gas, and pit arrays of about 150 nm in depth were formed on the wafer. Permalloy films were deposited on to the pit arrays using...
an electron beam evaporator, and the films outside the pit were polished out by CMP.

The remanent state of these nano-scale arrays was observed using an SII Nanotechnology model SPI-4000/SPA300HV magnetic force microscope (MFM) system with a low-moment probe (having a 24-nm-thick Co–Cr–Pt coated tip) using a specially designed Q-control in high vacuum, after applying a magnetic field of 20kOe in the direction toward the tip from the sample.

Figs. 2(a) and (b) show MFM images for CROSS1 measured in high vacuum with low-moment tip (a) in $10 \times 10 \mu m^2$ scan area and (b) in $1.5 \times 1.5 \mu m^2$ scan area.

Figs. 2(a) and (b) show MFM images for CROSS1 measured in high vacuum with low-moment tip in $10 \times 10 \mu m^2$ scan area and in $1.5 \times 1.5 \mu m^2$ scan area, respectively. The magnetic poles were observed as two pairs of bright and dark spots at the ends of the crossed-bars in Fig. 2(a). Fig. 2(b) shows a magnified image around the crossing region. A complicated MFM image was observed, that is, bright and dark contrasts appeared on each side of a slanted boundary in the crossing region.

Fig. 3(a) and (b) show the MFM image of one dot and that of another dot in the CROSS2 patterns, respectively. The bright and dark spots at the bar-ends of each dot appeared in a different configuration from that of CROSS1, which may be attributed to the smaller cross-patterns irregular in shape such as variations in width or depth of the bars, limited by the resolution of the EB lithography.

Micromagnetic calculations using the Landau–Lifshitz–Gilbert equation were done to explain the observed MFM images of the cross-shaped nano-scale patterns. The micromagnetic simulator [3] was modified to correspond to a complicated three-dimensional (3D) pattern, which was created using a generic 3D-CAD system. The equation was numerically solved using the fourth order Runge–Kutta method for high accuracy.

Fig. 4(a) shows the magnetization configuration of a cross-shaped pattern 100nm in width, 1.5μm in length, and 100nm in depth, corresponding to the pattern of CROSS2. The elementary volume is a 20nm cubic. The arrow and gradation shown as a background image represent the magnetization vectors and $-\text{div} \mathbf{M}$, respectively. The magnetization of each of the crossed-bars was aligned in the direction of the long side, due to shape anisotropy. The magnetization direction at the crossing region is thereby aligned in the direction from the top right to the bottom left. Fig. 4(b) shows the diagonal view rotated around the y-axis. The vortex structures were formed in the z-direction at each end of the crossed bars.

To demonstrate the MFM images, it is necessary to consider the interaction between the magnetization of the tip and the stray field of the sample. The MFM output signals are proportional to the force gradient between the tip and the sample. The force gradient is given by [4]

$$\frac{\delta F_z}{\delta z_{\text{tip}}} = \int_{\text{sample}} \frac{\partial^2 H_{\text{tip}}}{\partial z^2} \mathbf{M}_{\text{sample}} \, d^3 r$$

$$+ \int_{\text{sample}} \frac{\partial H_{\text{tip}}}{\partial z} \frac{\delta M_{\text{sample}}}{\delta z_{\text{tip}}} \, d^3 r,$$ \hspace{1cm} (1)
where H_{tip} is the stray field from the tip at the sample volume element, M_{sample} is the magnetization of a sample volume element at equilibrium, and z_{tip} is the tip–sample distance. The values of H_{tip} and M_{sample} are considered to change corresponding to the tip–sample interaction. The magnitude of the coercive force (H_c) for a 24-nm-thick Co–Cr–Pt coated tip is about 650 Oe. Therefore, the influence of a sample’s stray field on the magnetization of the hard magnetic tip is considered to be approximately constant. On the other hand, the influence of a tip’s stray field on the magnetization of the soft magnetic sample, that is, $\delta M_{\text{sample}}/\delta z_{\text{tip}}$ included in the second term of Eq. (1), is considerably large. However, in this work, this term was excluded to save calculation time.

Fig. 5 shows the schematic structure of the MFM probe model for calculating H_{tip} at the sample’s volume element.
element. The MFM probe’s tip (tip diameter \(d = 30 \text{ nm} \)) is coated with Co–Cr–Pt (thickness \(t = 24 \text{ nm} \) and \(H_c = 650 \text{ Oe} \)). The \(H_{\text{tip}} \) distributions were calculated using an integral equation method.

Fig. 6 shows the force gradient distributions of a cross-shaped pattern. Two pairs of bright and dark spots were obtained at the ends of the crossed-bars, as shown in Fig. 6(a). Furthermore, as shown in Fig. 6(b), bright and dark contrasts appeared on each side of a slanted boundary (the dotted line) in the crossing region, consistent with the experimental MFM image shown in Fig. 2(b), even though the size of the simulated pattern is different from that of the CROSS1 pattern shown in Fig. 2(b).

In conclusion, cross-shaped permalloy arrays embedded in silicon wafers were fabricated using the damascene technique, and their spin structures were investigated using MFM measurements. The force gradient distributions for a cross-shaped pattern were simulated based on micromagnetic calculations and tip’s stray field calculations using the integral equation method. This process of calculation successfully explains the important features of MFM images; i.e., appearance of magnetic poles at the bar ends, and the complicated spin structure at the crossing region.

The authors are very grateful to Dr. T. Yamaoka of SII Nanotechnology Inc. for his kind permission to use the MFM machine with a low-moment tip. This research has been conducted under the 21st-century COE program of TUAT on “Future Nano Materials”.

References